
Metadata Submitter
Release 0.9.0

Apr 28, 2021

Contents:

1 Metadata Submitter Backend 3
1.1 Environment Setup . 3
1.2 Install and run . 4
1.3 Authentication . 5
1.4 REST API . 6
1.5 Metadata Backend Modules . 6

2 Metadata Submitter Frontend 9
2.1 Environment Setup . 9
2.2 Install and run . 9
2.3 Internal structure . 10
2.4 Form components . 10
2.5 Constants . 10
2.6 Commonly used data types . 11
2.7 Redux store . 12
2.8 Communicating with backend REST API . 12
2.9 Styles . 13

3 Metadata Model 15
3.1 ENA Metadata Model . 15

4 Build and Deployment 17
4.1 Development Deployment . 17
4.2 Production Deployment . 18

5 Testing 19
5.1 Backend Testing . 19
5.2 Frontend Testing . 20

6 XML Validation CLI 21
6.1 Usage . 21

7 Indices and tables 23

i

ii

Metadata Submitter, Release 0.9.0

Metadata Submission service to handle submissions of metadata, either as JSON, XML files or via form submissions
via the Single Page Application frontend.

Metadata Submitter is divided intro Metadata Submitter Backend and Metadata Submitter Frontend, both of them
coming together in a Single Page Application that aims to streamline working with metadata and providing a submis-
sion process through which researchers can submit and publish metadata.

The application’s inteded use is with NeIC SDA (Sensitive Data Archive) stand-alone version, and it consists out of
the box includes the ENA (European Nucleotide Archive) metadata model, model which is used also by the European
Genome-phenome Archive (EGA).

Out of the box the metadata-submitter offers:

• flexible REST API for working with metadata;

• validating metadata objects against ENA XSD metadata models and their respective JSON schema;

• asynchronous web server;

• OIDC authentication;

• dynamic forms based on JSON schemas;

• simple wizard for submitting metadata.

A command-line interface for validating any given XML file against a specific XSD Schema has also been imple-
mented see XML Validation CLI.

Contents: 1

https://neic-sda.readthedocs.io/
https://ena-docs.readthedocs.io
https://ega-archive.org/
https://ega-archive.org/

Metadata Submitter, Release 0.9.0

2 Contents:

CHAPTER 1

Metadata Submitter Backend

Note: Requirements:

• Python 3.8+

• MongoDB

1.1 Environment Setup

The application requires some environmental arguments in order to run properly, these are illustrated in the table
below.

3

Metadata Submitter, Release 0.9.0

ENV Default Description Manda-
tory

MONGO_HOST localhost:27017MongoDB server hostname, with port specified if needed. Yes
MONGO_AUTHDB- MongoDB authentication database. Yes
MONGO_DATABASEdefault MongoDB default database, will be used as authentication database if

MONGO_AUTHDB is not set.
No

MONGO_USERNAMEadmin Admin username for MongoDB. Yes
MONGO_PASSWORDadmin Admin password for MongoDB. Yes
MONGO_SSL - Set to True to enable MONGO TLS connection url. No
MONGO_SSL_CA- Path to CA file, required if MONGO_SSL enabled. No
MONGO_SSL_CLIENT_KEY- Path to contains client’s TLS/SSL X.509 key,required if MONGO_SSL

enabled.
No

MONGO_SSL_CLIENT_CERT- Path to contains client’s TLS/SSL X.509 cert,required if MONGO_SSL
enabled.

No

AAI_CLIENT_SECRETpublic` OIDC client secret. Yes
AAI_CLIENT_IDsecret OIDC client ID. Yes
AUTH_REFERER- OIDC Provider url that redirects the request to the application. Yes
BASE_URL http://

localhost:5430
base URL of the metadata submitter. Yes

ISS_URL - OIDC claim issuer URL. Yes
AUTH_URL - Set if a special OIDC authorize URL is required, otherwise use

"OIDC_URL"/authorize.
No

OIDC_URL - OIDC base URL for constructing OIDC provider endpoint calls. Yes
REDIRECT_URL- Required only for testing with front-end on localhost or change to

http://frontend:3000 if started using docker-compose (see
Build and Deployment).

No

JWK_URL - JWK OIDC URL for retrieving key for validating ID token. Yes
LOG_LEVEL INFO Set logging level, uppercase. No
SERVE_KEY - Keyfile used for TLS. No
SERVE_CERT - Certificate used for TLS. No
SERVE_CA - CA file used for TLS. No
SERVE_SLLVERSION- Version used for TLS, see the gunicorn documentation for ssl_version for

more information.
No

SERVE_CIPHERS- Ciphers used for TLS, see the gunicorn documentation for ciphers for
more information.

No

SERVE_CERTREQS- Client certificate requirement used for TLS, see the gunicorn documenta-
tion for cert_reqs for more information.

No

Note: If just MONGO_DATABASE is specified it will autenticate the user against it. If just MONGO_AUTHDB is
specified it will autenticate the user against it. If both MONGO_DATABASE and MONGO_AUTHDB are specified, the
client will attempt to authenticate the specified user to the MONGO_AUTHDB database. If both MONGO_DATABASE
and MONGO_AUTHDB are unspecified, the client will attempt to authenticate the specified user to the admin database.

1.2 Install and run

For installing metadata-submitter backend do the following:

4 Chapter 1. Metadata Submitter Backend

https://docs.gunicorn.org/en/stable/settings.html#ssl-version
https://docs.gunicorn.org/en/stable/settings.html#ciphers
https://docs.gunicorn.org/en/stable/settings.html#cert-reqs
https://docs.gunicorn.org/en/stable/settings.html#cert-reqs

Metadata Submitter, Release 0.9.0

$ git clone https://github.com/CSCfi/metadata-submitter
$ pip install .

Hint: Before running the application have MongoDB running.

MongoDB Server expects to find MongoDB instance running, spesified with following environmental variables:

• MONGO_INITDB_ROOT_USERNAME (username for admin user to mondogdb instance)

• MONGO_INITDB_ROOT_PASSWORD (password for admin user to mondogdb instance)

• MONGO_HOST (host and port for MongoDB instance, e.g. localhost:27017)

To run the backend from command line use:

$ metadata_submitter

Hint: For a setup that requires also frontend follow the instructions in Build and Deployment.

1.3 Authentication

The Authentication follows the OIDC Specification.

We follow the steps of the OpenID Connect protocol.

• The RP (Client) sends a request to the OpenID Provider (OP), for this we require AAI_CLIENT_SECRET,
AAI_CLIENT_ID, OIDC_URL, a callback url constructed from BASE_URL and AUTH_URL if required.

• The OP authenticates the End-User and obtains authorization.

• The OP responds with an ID Token and usually an Access Token, we validate the ID Token for which we need
JWK_URL to get the key and ISS_URL to check the claims issuer is correct.

• The RP can send a request with the Access Token to the UserInfo Endpoint.

• The UserInfo Endpoint returns Claims about the End-User, use use some claims sub and eppn to identify the
user and start a session.

Information related to the OpenID Provider (OP) that needs to be configured is displayed in the table below. Most
of the information can be retrieved from OIDC Provider metadata endpoint https://<provider_url>/.
well-known/openid-configuration.

1.3. Authentication 5

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata

Metadata Submitter, Release 0.9.0

ENV Default Description Manda-
tory

AAI_CLIENT_SECRETpublic` OIDC client secret. Yes
AAI_CLIENT_IDsecret OIDC client ID. Yes
AUTH_REFERER - OIDC Provider url that redirects the request to the applica-

tion.
Yes

BASE_URL http://
localhost:5430

base URL of the metadata submitter. Yes

ISS_URL - OIDC claim issuer URL. Yes
AUTH_URL - Set if a special OIDC authorize URL is required, otherwise

use "OIDC_URL"/authorize.
No

OIDC_URL - OIDC base URL for constructing OIDC provider endpoint
calls.

Yes

JWK_URL - JWK OIDC URL for retrieving key for validating ID token. Yes

1.4 REST API

View metadata submitter API in swagger editor.

The REST API is structured as follows:

• Submission Endpoints used in submitting data, mostly POST endpoints;

• Query Endpoints used for data retrieval (folders, objects, users) uses HTTP GET;

• Management Endpoints used for handling data updates and deletion, makes use of HTTP PUT, PATCH and
DELETE.

Important: A logged in user can only perform operations on the data it has associated. The information for the
current user can be retrieved at /users/current (the user ID is current), and any additional operations on
other users are rejected.

1.5 Metadata Backend Modules

Backend for submitting and validating XML Files containing ENA metadata.

metadata_backend.api API endpoints and other api-related classes.
metadata_backend.conf App configurations.
metadata_backend.database Database services, initialisation and other tools.
metadata_backend.helpers Helper tools, such as app configurations, logging and

data validators.
metadata_backend.server Functions to launch backend server.

1.5.1 Metadata Backend API

API endpoints and other api-related classes.

6 Chapter 1. Metadata Submitter Backend

https://editor.swagger.io/?url=https://raw.githubusercontent.com/CSCfi/metadata-submitter/master/docs/specification.yml

Metadata Submitter, Release 0.9.0

metadata_backend.api.auth Handle Access for request and OIDC workflow.
metadata_backend.api.handlers Handle HTTP methods for server.
metadata_backend.api.health Handle health check endpoint.
metadata_backend.api.middlewares Middleware methods for server.
metadata_backend.api.operators Operators for handling database-related operations.

1.5.2 Database Operations

Database services, initialisation and other tools.

metadata_backend.database.db_service Services that handle database connections.

1.5.3 Utility Functions

Helper tools, such as app configurations, logging and data validators.

metadata_backend.helpers.logger Logging formatting and functions for debugging.
metadata_backend.helpers.parser Tool to parse XML files to JSON.
metadata_backend.helpers.
schema_loader

Utility class to find XSD Schema that can be used to test
XML files.

metadata_backend.helpers.validator Utility classes for validating XML or JSON files.

1.5.4 Configuration

App configurations.

metadata_backend.conf.conf Python-based app configurations.

1.5.5 Server

Functions to launch backend server.

metadata_backend.server.init()→ aiohttp.web_app.Application
Initialise server and setup routes.

Routes should be setup by adding similar paths one after the another. (i.e. POST and GET for same path grouped
together). Handler method names should be used for route names, so they’re easy to use in other parts of the
application.

Note: if using variable resources (such as {schema}), add specific ones on top of more generic ones.

metadata_backend.server.kill_sess_on_shutdown(app: aiohttp.web_app.Application) →
None

Kill all open sessions and purge their data when killed.

metadata_backend.server.main()→ None
Launch the server.

1.5. Metadata Backend Modules 7

Metadata Submitter, Release 0.9.0

8 Chapter 1. Metadata Submitter Backend

CHAPTER 2

Metadata Submitter Frontend

Note: Requirements:

• Node 14+

2.1 Environment Setup

The frontend can utilise the following env variables.

ENV Default Description
NODE_ENV - Set to development, if running in development mode.
REACT_APP_BACKEND_PROXYlocalhost:5430Proxy frontend requests to this backend, port must be speci-

fied.
Cypress.env port 3000 Port Cypress can use for integration tests. Can be set in

cypress.json

2.2 Install and run

For installing metadata-submitter frontend do the following:

$ git clone https://github.com/CSCfi/metadata-submitter-frontend
$ npm install

To run the frontend from command line use:

$ npm start

9

Metadata Submitter, Release 0.9.0

After installing and running, frontend can be found from http://localhost:3000.

Hint: Some functionality in frontend requires a working backend. Follow the instructions in Build and Deployment
for setting it up.

2.3 Internal structure

Reusable components are stored in src/components and views in src/views. View-components reflect page
structure, such as /, /newdraft, /login etc. One should not define and export views to be rendered inside other
views, but rather always build views using components.

React Router is used to render different views in App-component. All components are wrapped with Nav which
provider app menu and navigation.

2.4 Form components

Form components are crucial part of the application:

• All submissions and folder creation are made with react-hook-form. Latter uses form as a reference so sub-
mission can be triggered outside the form. JSON schema based forms are created with custom JSON schema
parser, which builds react-hook-form based forms from given schema. The forms are validated against the
JSON schema with Ajv. React-hook-form is used for performance reasons: it uses uncontrolled components
so adding a lot of fields to array doesn’t slow rendering of the application.

2.5 Constants

Folder src/constants holds all the constants used in the application. The constants are uniquely defined and
separated into different files according to its related context. For example, the file constants/wizardObject.
js contains unique constants regarding to wizardObject such as: ObjectTypes, ObjectStatus, etc.

The purposes of using these constants are:

• to avoid hard coding the values of variables repeatedly

• to keep the consistency when defining the values of variables

• to reuse those predefined values across the application

Example of defining and using a constant:

• First, define the constant object ObjectSubmissionTypes in constants/wizardObject.js

export const ObjectSubmissionTypes = {
form: "Form",
xml: "XML",
existing: "Existing",
}

• Then, use this constant in WizardComponents/WizardObjectIndex:

10 Chapter 2. Metadata Submitter Frontend

https://react-hook-form.com/

Metadata Submitter, Release 0.9.0

import { ObjectSubmissionTypes } from "constants/wizardObject"

switch (currentSubmissionType) {
case ObjectSubmissionTypes.form: {
target = "form"
break
}
case ObjectSubmissionTypes.xml: {
target = "XML upload"
break
}
case ObjectSubmissionTypes.existing: {
target = "drafts"
break
}

}

2.6 Commonly used data types

All commonly used data types of variables are defined in the file index.js in folder src/types. The purposes
are:

• to avoid hard coding the same data types frequently in different files

• to keep track and consistency of the data types across different files

For example:

• declare and export these data types in src/types/index.js

export type ObjectInsideFolder = {
accessionId: string,
schema: string,
}

export type ObjectTags = {
submissionType: string,
fileName?: string,
}

export type ObjectInsideFolderWithTags = ObjectInsideFolder & { tags: ObjectTags }

• import and reuse the data types in different files:

• Reuse type ObjectInsideFolder in features/wizardSubmissionFolderSlice.js:

import type { ObjectInsideFolder } from "types"

export const addObjectToFolder = (
folderID: string,
objectDetails: ObjectInsideFolder
) => {}

export const addObjectToDrafts = (
folderID: string,
objectDetails: ObjectInsideFolder
) => {}

2.6. Commonly used data types 11

Metadata Submitter, Release 0.9.0

• Reuse type ObjectInsideFolderWithTags consequently in both WizardComponents/
WizardSavedObjectsList.js and WizardSteps/WizardShowSummaryStep.js:

import type { ObjectInsideFolderWithTags } from "types"

type WizardSavedObjectsListProps = { submissions: Array<ObjectInsideFolderWithTags> }

import type { ObjectInsideFolderWithTags } from "types"

type GroupedBySchema = {| [Schema]: Array<ObjectInsideFolderWithTags> |}

2.7 Redux store

Redux is handled with Redux Toolkit and app is using following redux toolkit features:

• Store, global app state, configured in store.js

• Root reducer, combining all reducers to one, configured in rootReducer.js

• Slices with createSlice-api, defining all reducer functions, state values and actions without extra boiler-
plate. - Slices are configured for different features in features/ -folder. - Async reducer functions are also
configured inside slices.

Examples for storing and dispatching with async folder function:

import { useSelector, useDispatch } from "react-redux"
import { createNewDraftFolder } from "features/submissionFolderSlice"

// Create base folder (normally from form)
const folder = {
name: "Test",
description: "Test description for very best folder."
}

// Initialize dispatch with hook
const dispatch = useDispatch()

// Dispatch the action with folder
dispatch(createNewDraftFolder(folder))

// Folder is now submitted to backend and added to redux store

// Take folder from redux state, destructure and log values
const folder = useSelector(state => state.submissionFolder)
const { id, name, description, metadataObjects } = folder
console.log(id) // Should be id generated in backend
console.log(name) // Should be name we set earlier
console.log(description) // Should be description we set earlier
console.log(metadataObjects) // Should be an empty array

2.8 Communicating with backend REST API

API/backend modules are defined in services/ -folder with help from apisauce library. Modules should be only
responsible for API-related things, so one shouldn’t modify data inside them.

12 Chapter 2. Metadata Submitter Frontend

https://redux-toolkit.js.org/

Metadata Submitter, Release 0.9.0

Example:

import { create } from "apisauce"

const api = create({ baseURL: "/objects" })

const createFromXML = async (objectType: string, XMLFile: string) => {
let formData = new FormData()
formData.append(objectType, XMLFile)
return await api.post(`/${objectType}`, formData)
}

const createFromJSON = async (objectType: string, JSONContent: any) => {
return await api.post(`/${objectType}`, JSONContent)
}

2.9 Styles

App uses Material UI components.

Global styles are defined with style.css and Material UI theme, customized for CSC. Material UI theme is set
theme.js, and added to index.js for use.

Styles are also used inside components, either with withStyles (modifies Material UI components) or
makeStyles (creates css for component and its children). See customizing components for more info.

2.9. Styles 13

https://material-ui.com/
https://material-ui.com/customization/components/

Metadata Submitter, Release 0.9.0

14 Chapter 2. Metadata Submitter Frontend

CHAPTER 3

Metadata Model

3.1 ENA Metadata Model

The object schemas that are used for rendering the forms and validating the information submitted to the application
are based on the ENA (European Nucleotide Archive) Metadata Model.

The source XML schemas are from ENA Sequence Github repository. The XML schemas are converted to JSON
Schemas so that they can be both validate the submitted data as well as be rendered as forms in the User Interface. For
this reason the translation from XML Schema to JSON schema is not a 1-1 mapping, but an interpretation.

The ENA model consists of the following objects:

• Study: A study groups together data submitted to the archive. A study accession is typically used when
citing data submitted to ENA. Note that all associated data and other objects are made public when the study is
released.

• Project: A project groups together data submitted to the archive. A project accession is typically used when
citing data submitted to ENA. Note that all associated data and other objects are made public when the project
is released.

• Sample: A sample contains information about the sequenced source material. Samples are typically associated
with checklists, which define the fields used to annotate the samples.

• Experiment: An experiment contain information about a sequencing experiment including library and instru-
ment details.

• Run: A run is part of an experiment and refers to data files containing sequence reads.

• Analysis: An analysis contains secondary analysis results derived from sequence reads (e.g. a genome
assembly).

• DAC: An European Genome-phenome Archive (EGA) data access committee (DAC) is required for authorized
access submissions.

• Policy: An European Genome-phenome Archive (EGA) data access policy is required for authorized access
submissions.

15

https://ena-docs.readthedocs.io/en/latest/submit/general-guide/metadata.html
https://github.com/enasequence/schema/tree/master/src/main/resources/uk/ac/ebi/ena/sra/schema

Metadata Submitter, Release 0.9.0

• Dataset: An European Genome-phenome Archive (EGA) data set is required for authorized access submis-
sions.

3.1.1 Relationships between objects

Each of the objects are connected between each other by references, usually in the form of an accessionId. Some
of the relationships are illustrated in the Metdata ENA Model figure, however in more detail they are connected as
follows:

• Study - usually other objects point to it, as it represents one of the main objects of a Submission;

• Analysis - contains references to:

– parent Study (not mandatory);

– zero or more references to objects of type: Sample, Experiment, Run;

• Experiment - contains references to exactly one parent Study. It can also contain a reference to Sample
as an individual or a Pool;

• Run - contains reference to exactly one parent Experiment;

• Policy - contains reference to exactly one parent DAC;

• Dataset - contains references to:

– exactly one Policy;

– zero or more references to objects of type: Analysis and Run.

3.1.2 EGA/ENA Metadata submission Guides

Related guides for metadata submission:

• EGA Metadata guides:

– Submitting array based metadata

– Submitting sequence and phenotype data

• ENA Data Submission general Guide

16 Chapter 3. Metadata Model

https://ega-archive.org/submission/array_based/metadata
https://ega-archive.org/submission/tools/submitter-portal
https://ena-docs.readthedocs.io/en/latest/submit/general-guide.html

CHAPTER 4

Build and Deployment

4.1 Development Deployment

For integration testing and local development we recommend docker-compose, which can be installed using pip
install docker-compose.

4.1.1 Deploying Backend

Check out backend repository.

For quick testing, launch both server and database with Docker by running docker-compose up --build (add
-d flag to run containers in background). Server can then be found from http://localhost:5430.

This will launch a version without the frontend.

4.1.2 Deploying Frontend

Check out frontend repository.

For quick testing run docker-compose up --build (add -d flag to run container in the background). By
default, frontend tries to connect to docker container running the backend. Feel free to modify docker-compose.
yml if you want to use some other setup.

Integrating Frontend and Backend

With backend running as container and frontend with npm:

1. check out metadata submitter backend repository

2. un-commented line 24 from docker-compose.yml

3. docker-compose up -d --build backend repository root directory

17

https://github.com/CSCfi/metadata-submitter
https://github.com/CSCfi/metadata-submitter-frontend

Metadata Submitter, Release 0.9.0

4. check out metadata submitter frontend repository

5. npm start frontend repository root directory

With backend and frontend running in containers:

1. check out metadata submitter backend repository

2. un-commented line 24 from docker-compose.yml and modify to http://frontend:3000

3. docker-compose up -d --build backend repository root directory

4. check out metadata submitter frontend repository

5. docker-compose up -d --build frontend repository root directory

4.2 Production Deployment

To ease production deployment Frontend is built and added as static files to backend while building the Docker image.
The production image can be built and run with following docker commands:

docker build --no-cache . -t cscfi/metadata-submitter
docker run -p 5430:5430 cscfi/metadata-submitter

Important: Requires running MongoDB and consider setting the environment variables as pointed out in Metadata
Submitter Backend.

4.2.1 Kubernetes Deployment

For deploying the application as part of Kubernetes us the helm charts from: https://github.com/CSCfi/
metadata-submitter-helm/

18 Chapter 4. Build and Deployment

https://github.com/CSCfi/metadata-submitter-helm/
https://github.com/CSCfi/metadata-submitter-helm/

CHAPTER 5

Testing

Note: Unit tests and integration tests are automatically executed with every PR to for both frontend and backend in
their respective repositories.

5.1 Backend Testing

Tests can be run with tox automation: just run tox on project root (remember to install it first with pip install
tox).

5.1.1 Unit Testing

In order to run the unit tests, security checks with bandit, Sphinx documentation check for links consistency and
HTML output and flake8 (coding style guide) tox. To run the unit tests in parallel use:

$ tox -p auto

To run environments seprately use:

$ # list environments
$ tox -l
$ # run flake8
$ tox -e flake8
$ # run bandit
$ tox -e bandit
$ # run docs
$ tox -e docs

19

https://github.com/PyCQA/bandit
http://flake8.pycqa.org/en/latest/
http://tox.readthedocs.io/

Metadata Submitter, Release 0.9.0

5.1.2 Integration Testing

Integration tests required a running backend, follow the instructions in Build and Deployment for development setup of
backend. After the backend has been successfully setup run in backend repository root directory python tests/
integration/run_tests.py. This command will run a series of integration tests.

5.2 Frontend Testing

Run Jest-based tests with npm test. Check code formatting and style errors with npm run lint:check and
fix them with npm run lint. Respectively for formatting errors in json/yaml/css/md -files, use npm run
format:check or npm run format. Possible type errors can be checked with npm run flow.

We’re following recommended settings from eslint, react and prettier - packages witha a couple of excep-
tions, which can be found in .eslintrc and .prettierrc. Linting, formatting and testing are also configured
for you as a git pre-commit, which is recommended to use to avoid fails on CI pipeline.

5.2.1 End to End testing

End-to-end tests can be run on local host with npx cypress open in frontend repository. These tests required a
running backend, follow the instructions in Build and Deployment for development setup of backend.

If the frontend is started with npm start no changes required in the setup.

20 Chapter 5. Testing

CHAPTER 6

XML Validation CLI

A command-line interface for validating any given XML file against a specific XSD Schema has also been imple-
mented. The tool can be found and installed from metadata-submitter-tools repository.

6.1 Usage

After the package has been installed, the validation tool is used by by executing xml-validate in a terminal with
specified options/arguments followingly:

$ xml-validate <option> <xml-file> <schema-file>

The <xml-file> and <schema-file> arguments need to be the correct filenames (including path) of a local
XML file and the corresponding XSD file. The <option> can be --help for showing help and -v or --verbose
for delivering a detailed validation error message.

Below is a terminal demonstration of the usage of this tool, which displays the different outputs the CLI will produce:

21

https://github.com/CSCfi/metadata-submitter-tools

Metadata Submitter, Release 0.9.0

22 Chapter 6. XML Validation CLI

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

23

	Metadata Submitter Backend
	Environment Setup
	Install and run
	Authentication
	REST API
	Metadata Backend Modules

	Metadata Submitter Frontend
	Environment Setup
	Install and run
	Internal structure
	Form components
	Constants
	Commonly used data types
	Redux store
	Communicating with backend REST API
	Styles

	Metadata Model
	ENA Metadata Model

	Build and Deployment
	Development Deployment
	Production Deployment

	Testing
	Backend Testing
	Frontend Testing

	XML Validation CLI
	Usage

	Indices and tables

